Ensemble learning

Results: 532



#Item
331Statistics / Machine learning / Data types / Boosting / Ada / Is functions / Plot / Gradient boosting / Array data type / Computing / Ensemble learning / Software engineering

Package ‘ada’ July 2, 2014 Version[removed]Date[removed]Title ada: an R package for stochastic boosting Author Mark Culp, Kjell Johnson, and George Michailidis

Add to Reading List

Source URL: cran.r-project.org

Language: English - Date: 2014-07-02 11:11:47
332Ensemble learning / Random forest / Multivariate statistics / Random variable / Variable / Plot / Feature selection / Is functions / Correlation and dependence / Statistics / Information / Science

Package ‘varSelRF’ July 2, 2014 Version 0.7-3 Date 2010-10-28 Title Variable selection using random forests Author Ramon Diaz-Uriarte

Add to Reading List

Source URL: cran.r-project.org

Language: English - Date: 2014-07-02 16:47:53
333Artificial intelligence / Optics / Computer vision / Learning / AdaBoost / Ensemble learning / Camera

SFU at TRECVid 2010: Surveillance Event Detection Zhi Feng Huang School of Computing Science Simon Fraser University, Canada Greg Mori

Add to Reading List

Source URL: www-nlpir.nist.gov

Language: English - Date: 2011-03-04 14:18:51
334Image processing / Learning / Computer vision / Statistical classification / Machine learning / AdaBoost / Feature / Segmentation / Boosting / Artificial intelligence / Ensemble learning / Statistics

UEC at TRECVID 2008 High Level Feature Task Zhiyuan Tang and Keiji Yanai Department of Computer Science, The University of Electro-Communications, JAPAN {tou-s,yanai}@mm.cs.uec.ac.jp Abstract

Add to Reading List

Source URL: www-nlpir.nist.gov

Language: English - Date: 2008-12-03 08:54:11
335Vision / Image processing / Statistical classification / Histogram of oriented gradients / Ensemble learning / Machine learning / Object recognition / Segmentation / Random forest / Computer vision / Statistics / Artificial intelligence

Oxford/IIIT TRECVID 2008 – Notebook paper James Philbin, Manuel Marin-Jimenez, Siddharth Srinivasan and Andrew Zisserman Visual Geometry Group, Department of Engineering Science, University of Oxford, United Kingdom Mi

Add to Reading List

Source URL: www-nlpir.nist.gov

Language: English - Date: 2008-12-03 08:54:05
336Econometrics / Decision trees / Actuarial science / Gradient boosting / Boosting / Linear regression / Least squares / Generalized linear model / Multicollinearity / Statistics / Regression analysis / Ensemble learning

Model-based Boosting in R A Hands-on Tutorial Using the R Package mboost Benjamin Hofner∗† Andreas Mayr†

Add to Reading List

Source URL: cran.r-project.org

Language: English - Date: 2014-10-02 11:30:58
337Artificial intelligence / Machine learning / Ensemble learning / Random forest / C++ / Decision tree learning / Supervised learning / Matrix / Subroutine / Computer programming / Decision trees / Computational statistics

Package ‘bigrf’ July 2, 2014 Version 0.1-11 Date 2014-05-16 Title Big Random Forests: Classification and Regression Forests for Large Data Sets Maintainer Aloysius Lim

Add to Reading List

Source URL: cran.r-project.org

Language: English - Date: 2014-07-02 11:20:52
338Learning / Gradient boosting / Random forest / Null / Boosting / Statistics / /dev/null / Ensemble learning / Decision trees / Artificial intelligence

Package ‘ModelMap’ July 2, 2014 Type Package Title Creates Random Forest and Stochastic Gradient Boosting Models,and applies them to GIS .img files to build detailed prediction maps. Version[removed]

Add to Reading List

Source URL: cran.r-project.org

Language: English - Date: 2014-07-02 10:05:39
339Computer vision / Statistical classification / Ensemble learning / Face recognition / Support vector machine / Object recognition / Face detection / Random forest / Boosting methods for object categorization / Artificial intelligence / Machine learning / Vision

Oxford-IIIT TRECVID 2009 – Notebook Paper Sreekanth Vempati, Mihir Jain, Omkar M. Parkhi, C. V. Jawahar Center for Visual Information Technology, International Institute of Information Technology, Gachibowli, Hyderabad

Add to Reading List

Source URL: www-nlpir.nist.gov

Language: English - Date: 2009-12-07 10:16:56
340Ensemble learning / Supervised learning / Kullback–Leibler divergence / Margin classifier / AdaBoost / Quasigroup / Mutual information / Lambda calculus / Statistics / Mathematics / Machine learning

Boosting with Incomplete Information Gholamreza Haffari1∗ Yang Wang1∗ Shaojun Wang2 Greg Mori1

Add to Reading List

Source URL: www.cs.sfu.ca

Language: English - Date: 2008-05-20 17:07:06
UPDATE